Here in Belgium there used to be big government subsidies for solar panels 5-10 ago.
Now the same wattage battery + solar setup without any government subsidies is a good chunk cheaper than that time with the large subsidies.
Pretty cool and shows the power of government renewables subsidies. A huge percentage of houses in Belgium have solar panels now.(and electricity still costs 0.30€/kWh average because of fossil fuel energy lobbies)
Now that there is a local industry around it, most renovations and almost all new builds include them.
4 million households in Australia have solar panels.
They are great value.
As your northern neighbors. We did subsidize it too, but now the privatized energy companies started whining that there wasn’t enough capacity, so now they charge you for creating free energy
Yes I’m considering buying a high power laser so I can send the energy back into space instead of paying the power companies for the privilege of giving them electricity.
Great idea! Some inspiration right here :
I’m fairly sure that all newly built houses in the UK require solar by law.
All the new houses around here with no solar would indicate that is not true. They’re not even required to have a south facing roof.
$60k per MW or $210M for a nuclear reactors worth (3.5GW). Sure… the reactor will go 24/7 (between maintenance and refuelling down times, and will use less land (1.75km² Vs ~40km²) but at 1% of the cost, why are we still talking about nuclear.
(I’m using the UKs Hinckley Point C power station as reference)
Because there are nights there are winters there are cloudy and rainy days, and there are no batteries capable of balancing all of these issues. Also when you account for those batteries the cost is going to shift a bit. So we need to invest in nuclear and renewables and batteries. So we can start getting rid of coal and gas plants.
Also when you account for those batteries the cost is going to shift a bit.
You better be bringing units if you’re going to be claiming this.
Still less than half of the LCOE of nuclear when storage is added: https://www.statista.com/statistics/1475611/global-levelized-cost-of-energy-components-by-technology/
Given that both solar and storage costs are trending downwards while nuclear is not, this basically kills any argument for nuclear in the future. It’s not viable on its face - renewables + storage is the definitive future.
And cheaper solar and batteries permits cheaper Hydrogen which provides unlimited and 100% resilient renewable power, and still cheaper than nuclear.
I have a generally negative impression of hydrogen because many of the intended use-cases seem to be a cover story for the gas industry to keep existing, which it very much should not be any more.
Do you know any use-cases where hydrogen is truly warranted, outside for example steel production, which I think might be legit?
The case for an H2 economy is one entirely based on Green H2 made from surplus renewables which are needed most days to have enough renewable energy every day.
That gas companies know how to build pipelines, distribution, and make metered gas sales to customers is a path for them/employees to remain useful without destroying the planet.
Commercial vehicles has legitimate benefits of lower cost from H2 FCs than batteries. Quicker refuel times. Aviation especially benefits from redesigning planes for H2 for the weight savings. Trains/ships need the power/range. Trucks/cars can use the range extension, and could use H2 as removable auxiliary power for extended range.
Those vehicles can also charge the grid, and as hybrids, EVs or grid can be charged from static H2 FCs. For building energy, a FC can provide the usual fraction of domestic hot water from its waste heat. The electric monopoly problem is an opportunity for both producers and consumers to bypass their high rates and fees. Ammonia and fertilizer is traditional use for H2. There needs to be a carbon tax to move away from giant fosil H2 plants powering next door giant ammonia/fertilizer plants.
Hydrogen electrolysis is just one form of electro chemistry. Other fertilizers can be made from simpler versions of the process. It’s not so much that H2 is essential in unlimited quantities, it is that electro chemistry is possible ultra cheaply when there is an abundance of renewables that provides enough energy every day to power their locality. H2 is special as a chemical for being transportable/convertable as mobile or other elecricity/heat.
You’re using factors of less than 10 to argue against a factor of 100.
But Germany has no space for nuclear waste. They haven’t been able to bury the last batch for over 30 years. And the one that they buried most recently began to leak radioactivity into ground water.
And… why give Russia more military target opportunities?
If France can find space, surely Germany can.
If Finland could find space, Germany definitely can.
Idk, Finland has a much lower population density vs Germany. France is something like 1/2 the population density, but they also have >50 reactors, so surely Germany can find room for a few…
I’m not a rabid anti-nuclear, but there are somethings that are often left out of the pricing. One is the exorbitant price of storage of spent fuel although I seem to remember that there is some nuclear tech that can use nuclear waste as at least part of it’s fuel (Molten salt? Pebble? maybe an expert can chime in). There is also the human greed factor. Fukushima happened because they built the walls to the highest recorded tsunami in the area, to save on concrete. A lot of civil engineering projects have a 150% overprovision over the worst case calculations. Fukushima? just for the worst case recorded, moronic corporate greed. The human factor tends to be the biggest danger here.
there is some nuclear tech that can use nuclear waste as at least part of it’s fuel
Those are less competitive, and salt reactor attempts have historically caused terminating corrosion problems. The SMR “promise” relies on switching extremely expensive/rare/dangerous plutonium level enriched fuel, that rely on traditional reactors for enrichment, for slightly lower capital costs.
but at 1% of the cost, why are we still talking about nuclear
Sure… the reactor will go 24/7 (between maintenance and refuelling down times, and will use less land
I think there’s a contingent of people who think nuclear is really, really cool. And it is cool. Splitting atoms to make power is undeniably awesome. That doesn’t make it sensible, though, and they don’t separate those two thoughts in their mind. Their solution is to double down on talking points designed for use against Greenpeace in the 90s rather than absorbing new information that changes the landscape.
And then there’s a second group that isn’t even trying to argue in good faith. They “support” nuclear knowing it won’t go anywhere because it keeps fossil fuels in place.
What isn’t sensible about nuclear? For context, I’m coming from the US in an area with lots of empty space (i.e. tons of place to store radioactive waste) and without much in the way of hydro (I’m in Utah, a mountainous, desert climate). We get plenty of sun as well as plenty of snow. Nuclear should provide power at night and throughout the winter, and since ~89% of homes are heated with natural gas, we only need higher electricity production in the summer when it’s hot, which is precisely what solar is great for.
So here’s my thought process:
- nuclear for base load demand to cover nighttime power needs, as well as the small percentage of homes using electricity for heat
- solar for summer spikes in energy usage for cooling
- batteries for any excess solar/nuclear generation
If we had a nuclear plant in my area, we could replace our coal plants, as well as some of our natural gas plants. If we go with solar, I don’t think we have great options for electricity storage throughout the winter.
This is obviously different in the EU, but surely the nordic countries have similar problems as we do here, so why isn’t nuclear more prevalent there?
Because it makes no sense, environmentally or economically speaking. Nuclear is, as you said, base load. It can’t adjust for spikes in demand. So if there’s more energy in the grid than needed, it’s gonna be solar and wind that gets turned off to balance the grid. Investments in nuclear thus slow down the adoption of renewables.
Solar is orders of magnitude cheaper to build, while nuclear is one of the most expensive ways to generate electricity, even discounting the waste storage, which gets delegated the the public.
Battery technology has been making massive gains in scalability and cost in recent years. What we need is battery arrays to cover nighttime demand and spikes in production or demand, combined with a more adaptive industry that performs energy intensive tasks when it’s abundant. With countries that have large amounts of solar, it is already happening that during peak production, energy cost goes to zero (or even negative, as traded between utilities companies).
About the heating: gas can not stay the main way to heat homes, it’s yet another fossil fuel. What we need is heat pumps, which can have an efficiency of >300% (1kWh electricity gets turned into 3kWh of heat, by taking ambient heat from outside). Combined with large, well-insulated warm-water reservoirs, you can heat up more water than you need to higher temperature during times of electricity oversupply, and have more than enough to last you the night, without even involving batteries. Warm water is an amazing energy storage medium. Batteries cover electricity demand as well as a backup in case you need uncharacteristically much water. This is a system that’s slowly getting adopted in Europe, and it’s great. Much cheaper, and 100% clean.
You bring up heated water as a method of storage, and it reminds me of a neighborhood in Alberta, Canada that uses geothermal + solar heated water storage for 52 homes. They’ve been able to successfully heat the entire neighborhood with only solar over the winter in 2015-2016 and have gotten > 90% solar heating in other years.
https://en.wikipedia.org/wiki/Drake_Landing_Solar_Community
There’s a huge number of new storage technologies being developed, and the fact that some even work on a seasonal basis for long term storage is amazing.
That’s pretty cool! Still seems to have some issues, but as the technology matures, that seems like a promising technology. I didn’t know seasonal warm water storage was a thing
What we need is battery arrays
I absolutely agree. My support for nuclear is not instead of renewables, but in addition to it. Nuclear is a proven technology, and at least in the US, we have a lot of space where we can store waste relatively inexpensively (nobody’s going to care about a massive landfill in Nevada).
The problem with going for 100% renewables is that I don’t think we can really keep up with battery production, and if we push for dramatically increasing our energy storage capacity (whether that’s chemical batteries, pumped hydro, etc), it’s going to cost a ton to transition. Solar is cheaper than nuclear, but solar + battery backup currently is not, especially if it needs to run over the winter when solar generation is much lower.
I’m not saying we should stop installing battery-backed solar projects, but that we should add nuclear to the list. Our electricity demand will only continue to increase, so we need multiple solutions to replace coal and eventually natural gas. One of the major cost and time limitations for nuclear is construction, and that’s because we don’t build many of them. If we line up multiple plant projects at the same time, we can make better use of our engineering resources (it’s a lot easier to build 10 of something back to back than 10 of something months or years apart), which will make nuclear more attractive compared to other options.
gas can not stay the main way to heat homes
Agreed, and I’ve actually been looking into heat pumps for my own home. I already have an external AC unit, so theoretically the transition shouldn’t be that hard (air ducts already exist).
The problem is that, in my area, winters get pretty cold, and heat pumps are a lot less efficient at heating when it’s cold. The solution is to dig a deep hole to bury the heat exchangers so they get a more consistent temperature to maintain efficiency, and that’s a really expensive project for existing structures (not bad for new construction). The transition to heat pumps is going to be very slow because of that large upfront cost/poor efficiency in winter.
Even if this wasn’t an issue, there’s still the massive problem of existing electricity production (in my area) being fueled by coal and natural gas. If I switch to a heat pump, I may be polluting more than if I stuck with gas (it’s pretty close last I checked). My state (ignoring transportation) gets something like 1/3 of its energy from coal, about half from natural gas, and most of the rest comes from solar (and a little from wind). We need something to handle that base load supply, and installing batteries is going to be expensive (esp. since hydro isn’t really an option in our desert) and probably take many years regardless. Nuclear can be built today, and in my area, it can be built on the other side of a mountain range from the bulk of the population.
Warm water is an amazing energy storage medium
I doubt we have enough water here in the desert to handle that. We already have problems with our existing inconsistent water supply for regular users, locking up even more water is going to be a really tough sell.
We also should consider HVDC lines. The longest one right now is in Brazil, and it’s 1300 miles long. With that kind of range, wind in Nebraska can power New York, solar in Arizona can power Chicago, and hydro all around the Mississippi river basin can store it all. We may have enough pumped hydro already that we might not even need batteries, provided we can hook it all up.
HVDC is much more expensive than Hydrogen pipelines, which doubles as storage and transmission, and can provide continent wide resilience, even when local renewables provide much cheaper power when it is available than either long distance electric or H2 power.
The studies on hydrogen pipelines tends to assume there’s some existing reservoir of hydrogen. Making hydrogen in a green way is expensive, and that completely ruins its economic viability.
You have to have some base load it can’t be all renewable because renewables just aren’t reliable enough. The only way to get 100% reliability from solar for example would be to build a ring of panels around the equator (type 1 civilization stuff).
Of all the options for base load, nuclear is the least worst, at least until we can get Fusion online, but you know that’s always 20 years away.
A MW of solar averages out to about .2 MWh per hour. A MW of nuclear averages about .9 MWh per hour.
But even so as the UK does it, nuclear power isn’t worth it. France and China are better examples since they both picked a few designs and mass produced them.
China’s experience indicates you can mass produce nuclear relatively cheaply and quickly, having built 35 out of 57GW in the last decade, and another 88GW on the way, however it’s not nearly as quick to expand as solar, wind, and fossil fuels.
Maybe just use percentages instead of these weird units. 0.2 MHh per hour is just 0.2 MW, or 20%.
It seems easier to say solar produces an average of 20% of it’s peak capacity.
MW/h
There is MW which is a unit of power and then there is MWh which is a unit of energy, but what is MW/h supposed to mean?
In many regions solar capacity factor is much higher than 20%; for example, the entire US. https://atb.nrel.gov/electricity/2021/utility-scale_pv
We can’t manufacture and install enough solar farms and storage to get us off of fossil fuel within 20 years and more importantly available investment capital isn’t the limiting factor.
Investments in nuclear power are not taking money away from investments in solar.
We can do both, and it gets us off fossil fuels sooner.
Investments in nuclear power are not taking money away from investments in solar.
This is interesting. Why do you think that?
I would disagree, because is see investment capital as finite. There are only so many investors able to operate at infrastructure scales. And therefore I see nuclear’s true cost as opportunity cost.
Solar has always an extremely high ratio for megawatt per mass unit.
This price is really good
Good news perhaps but I’m sure I won’t see any benefit in Scotland, still thousands to add solar panels.
Yup. Average here in south US is 25k for a home system without battery backup.
At the risk of getting political, you should expect that to go up under Trump. The tariff war with China during his first term kept panel prices high, and it’s going to be worse this time. And that’s not his only policy that will affect pricing.
Scotland has really good wind power, anyway. Between that, nuclear, and a few other renewable sources, you guys are down to 10% fossil fuel energy use. So don’t worry about solar.
Just have to buy 1100 panels 😋 but then the price is 0.055€/watt …
I Want one, but only one or a couple, to put on my balcony…
Thousands of people buying rooftop panels was never going to be the best way towards a Water/Wind/Solar (WWS) future. Fitting panels to the roof has to work around the roof geometry and obstructions like vents. That makes every job a custom job. It also means thousands of small inverters rather than a few big ones.
Compare that to setting up thousands of panels on racks in a field. As long as it’s relatively open and flat, you just slap those babies down. You haul in a few big inverters which are often built right into shipping containers that can just be placed on site, hooked up, and left there. Batteries need inverters, too, so if your project includes some storage, then you only need one set of inverters.
I get the feeling of independence from the system that solar panels on the roof gives people, but it’s just not economically the best way to go. The insanely cheap dollars per MWh of solar is only seen when deploying them on a mass scale. That means roofs of commercial/industrial buildings or bigger.
Rooftop units might not be the least expressive, but they are absolutely the way to go. The less we rely on the utilities, the more demand we take off of their adding grid, that they refuse to upgrade. It also means more energy independence. A friend of mine has a small rooftop setup that has completely offset his electricity isn’t to the punt that he bought a plugin hybrid that never goes out battery for his day to day travels and costs him nothing to charge.
If you want energy independence, push for community solar. Neighborhoods or municipalities get together to own their own solar field. Then you get a measure of independence while also taking advantage of economies of scale.
These are topcon modules only. Considering a 400W panel will have about 72 modules in it, that’s only about 15 panels worth. Of course, then you have to actually build the panel and connect the modules, put it behind glass inside a frame, then put in a bypass diode and leads for connection. So an actual panel ends up being about 5-10X the cost of the modules per W.
You can pay a lot less than 10x for completed panels. https://store.santansolar.com/ amazed me.
does the link not work in 'murica?
The link doesn’t work at all.
If they simply didn’t want to sell to a certain demographic it would still load the website but would just say they don’t operate in your region. The error you get back is once you get back if the domain doesn’t exist.
Assuming these prices are ideal for a solar grid, which EU country(s) would have the highest chance of shifting towards solar; I wonder
Probably all of them. Germany is really not ideal for solar in terms of weather, yet they are installed by many people all over the place, even today. With the cheaper prices things will get even better.
Germany is already over 50% renewable. :)
Theyre $1.25 per watt in south America right now (we have an energy crisis due to climate change caused drought)
It’s kinda good but it completely destroyed the European manufacturing for solar
It is good, period.
Local manufacturing is politically advantageous and may employ some people at the same time, but that’s where benefits end.
Europe didn’t reject Chinese face masks during COVID-19, and Europe shouldn’t reject Chinese solar during a climate emergency.
Solve that first, and political struggles later.
It’s not only a political struggle. Working conditions are tremendously better in Europe, Environmental Protection as well. Manufacturing photovoltaics takes a huge pile of chemicals that need to be handled properly to not cause any harm to the environment - China neither cares nor has any other incentives to actually do this properly, which is exactly why they are so cheap. Theres also the issue of poor quality, that if you’re manufacturing something that can have a significant impact on the environment, it should “count” and not be waste 10 years later.
Not only that, China’s subsidies are utterly unfair.
Destroying the environment in one part of the world to “save” a different one due to climate change is just ridiculously stupid and simple minded.
I see where you’re coming with that, and in principle, some of the points you make I would clearly share under different circumstances.
But to me, even with the side effects, rapid rollout of green tech (even if its production is not kept to the best standard) beats slow incremental growth with good standards in place, given the urgency with which world requires it. After all, even poorly produced Chinese options very much do offset their footprint compared to the alternatives.
There are some points for concern, such as the use of lithium ion batteries, for example, but Chinese companies also think ahead and implement alternative options - in case of batteries, they increasingly work with sodium-ion instead.
Manufacturing photovoltaics takes a huge pile of chemicals that need to be handled properly to not cause any harm to the environment
Source for this? Cadmium is exclusive to 1 US manufacturer.
Solar manufacturing is not destroying China’s environment, fossil fuels are. By a massive margin.
They need to get off that merry go round as quickly as possible. While the efforts they’ve made are incredible it needs to continue to accelerate.
I wouldn’t say they’ve achieved these prices through subsidies in the way many people think. government support pushed their entire renewable industry ecosystem, western manufacturing went belly up, and now they are reaping the benefits.
When panels were 30c/watt, projects at $1/watt in EU and US happened. 70c/watt was spent on labour, copper, support structures, and grid connection equipment. All of those can be locally produced, with possible exception of last item.
At 6c/watt, that is over 90% of power projects are local economy boosting instead of 70%. It provides cheaper energy that is useful for industrialization and cost of living benefits too. US tariffs on solar are entirely about protecting oil/gas extortion power instead of a $10B solar production industry that needs fairly expensive support.
Solar imports does not cause energy dependence. You have power for 30+ years with no reliance on continuous fuel supplies. Shoes and apparel is a $450B industry in US. You need new supplies every year, and it makes much more sense to secure supply in that industry for war on the world purposes.
You’re either an astroturfer or useful idiot spreading oil lobby talking points.
Either you believe the climate science or you don’t. If you do, you know that we don’t have time for industry protectionism.
Do not assume bad faith over anything you disagree with.
While I disagree with the original statement, hostility never changed anyone’s mind.
hostility never changed anyone’s mind
Chronic abuse absolutely shapes human perception and behavior.
In this case, a lot of Lemmy has been so battered down by “China Bad” propaganda that they’ll straight up deny the threat of climate change to justify rejecting Chinese manufactured goods.
I’m not trying to change their mind. I’m trying to expose them.
What you’re doing is called “making shit up”. If you have a problem with their talking point then address it, but don’t make shit up about who they are or why they’re saying what they’re saying.
As in the way you’re accusing me of “making shit up,” just because you’re not aware of decades of lobbying and astroturfing efforts by the fossil fuel industry against nuclear?
Yep the EU will be beholden to a dictatorial regime again. Instead of placating Putin for gas it will be Xi for solar panels and batteries.
At least those items you only need to buy once.
What? Have you ever had a battery powered device for longer than 2 years?
All of them, plus storage batteries are under much less abuse and are different chemistry that lasts a lot longer.