• Benaaasaaas@lemmy.world
    link
    fedilink
    English
    arrow-up
    3
    arrow-down
    1
    ·
    1 year ago

    Because there are nights there are winters there are cloudy and rainy days, and there are no batteries capable of balancing all of these issues. Also when you account for those batteries the cost is going to shift a bit. So we need to invest in nuclear and renewables and batteries. So we can start getting rid of coal and gas plants.

    • GissaMittJobb@lemmy.ml
      link
      fedilink
      English
      arrow-up
      1
      ·
      1 year ago

      Also when you account for those batteries the cost is going to shift a bit.

      You better be bringing units if you’re going to be claiming this.

      Still less than half of the LCOE of nuclear when storage is added: https://www.statista.com/statistics/1475611/global-levelized-cost-of-energy-components-by-technology/

      Given that both solar and storage costs are trending downwards while nuclear is not, this basically kills any argument for nuclear in the future. It’s not viable on its face - renewables + storage is the definitive future.

      • humanspiral@lemmy.ca
        link
        fedilink
        English
        arrow-up
        0
        ·
        1 year ago

        And cheaper solar and batteries permits cheaper Hydrogen which provides unlimited and 100% resilient renewable power, and still cheaper than nuclear.

        • GissaMittJobb@lemmy.ml
          link
          fedilink
          English
          arrow-up
          0
          arrow-down
          1
          ·
          1 year ago

          I have a generally negative impression of hydrogen because many of the intended use-cases seem to be a cover story for the gas industry to keep existing, which it very much should not be any more.

          Do you know any use-cases where hydrogen is truly warranted, outside for example steel production, which I think might be legit?

          • humanspiral@lemmy.ca
            link
            fedilink
            English
            arrow-up
            1
            ·
            1 year ago

            The case for an H2 economy is one entirely based on Green H2 made from surplus renewables which are needed most days to have enough renewable energy every day.

            That gas companies know how to build pipelines, distribution, and make metered gas sales to customers is a path for them/employees to remain useful without destroying the planet.

            Commercial vehicles has legitimate benefits of lower cost from H2 FCs than batteries. Quicker refuel times. Aviation especially benefits from redesigning planes for H2 for the weight savings. Trains/ships need the power/range. Trucks/cars can use the range extension, and could use H2 as removable auxiliary power for extended range.

            Those vehicles can also charge the grid, and as hybrids, EVs or grid can be charged from static H2 FCs. For building energy, a FC can provide the usual fraction of domestic hot water from its waste heat. The electric monopoly problem is an opportunity for both producers and consumers to bypass their high rates and fees. Ammonia and fertilizer is traditional use for H2. There needs to be a carbon tax to move away from giant fosil H2 plants powering next door giant ammonia/fertilizer plants.

            Hydrogen electrolysis is just one form of electro chemistry. Other fertilizers can be made from simpler versions of the process. It’s not so much that H2 is essential in unlimited quantities, it is that electro chemistry is possible ultra cheaply when there is an abundance of renewables that provides enough energy every day to power their locality. H2 is special as a chemical for being transportable/convertable as mobile or other elecricity/heat.

    • Suzune@ani.social
      link
      fedilink
      English
      arrow-up
      0
      ·
      1 year ago

      But Germany has no space for nuclear waste. They haven’t been able to bury the last batch for over 30 years. And the one that they buried most recently began to leak radioactivity into ground water.

      And… why give Russia more military target opportunities?

          • sugar_in_your_tea@sh.itjust.works
            link
            fedilink
            English
            arrow-up
            2
            ·
            1 year ago

            Idk, Finland has a much lower population density vs Germany. France is something like 1/2 the population density, but they also have >50 reactors, so surely Germany can find room for a few…

      • elucubra@sopuli.xyz
        link
        fedilink
        English
        arrow-up
        0
        ·
        1 year ago

        I’m not a rabid anti-nuclear, but there are somethings that are often left out of the pricing. One is the exorbitant price of storage of spent fuel although I seem to remember that there is some nuclear tech that can use nuclear waste as at least part of it’s fuel (Molten salt? Pebble? maybe an expert can chime in). There is also the human greed factor. Fukushima happened because they built the walls to the highest recorded tsunami in the area, to save on concrete. A lot of civil engineering projects have a 150% overprovision over the worst case calculations. Fukushima? just for the worst case recorded, moronic corporate greed. The human factor tends to be the biggest danger here.

        • humanspiral@lemmy.ca
          link
          fedilink
          English
          arrow-up
          1
          ·
          1 year ago

          there is some nuclear tech that can use nuclear waste as at least part of it’s fuel

          Those are less competitive, and salt reactor attempts have historically caused terminating corrosion problems. The SMR “promise” relies on switching extremely expensive/rare/dangerous plutonium level enriched fuel, that rely on traditional reactors for enrichment, for slightly lower capital costs.