Personally I find quantum computers really impressive, and they havent been given its righteous hype.
I know they won’t be something everyone has in their house but it will greatly improve some services.
Quantum Computing is still climbing the slope from TT to the Peak of Inflated Expectations. There is still little to no major hype, as its still in “R&D/testing” it is slow, it is expensive (Very) limited due to all the surrounding tech required to make it work like cooling, containment etc…
Compare this to AI.
AI is at and heading down from the Peak towards the Trough of Disillusionment. It was easy (relatively) to implement, easy to evolve as how nVidia did, simply throw more silicon at it. The Hype was easy to generate because even while totally misinformed, media and other people out there thought they could easily sell it. Even though most of what they claimed was turd, it sounded amazing and a game changer even in the early stages, and businesses lapped it up. Now they are feeling the pain, and seeing that there are still major hurdles to get past.
Inflated Expectations. Most people who are aware of them will still talk about how they’re going to destroy crypto. We are very, very far off from the size of QC that could possibly do that. It may not even be feasible to do the quantum juggling act necessary to handle that many qbits. Plus, we already have post-quantum crypto making its way into TLS and other cryptographic suites.
And don’t get me started on the morons who think the NSA already has some super secret breakthrough QC that can already break all crypto. Often from the same sorts of people who (correctly) throw Russell’s Teapot at creationists.
Meanwhile, there are far more interesting possibilities that don’t need so many qbits. Things like improving logistics or molecular simulation.
I think we’re still headed up the peak of inflated expectations. Quantum computing may be better at a category of problems that do a significant amount of math on a small amount of data. Traditional computing is likely to stay better at anything that requires a large amount of input data, or a large amount of output data, or only uses a small amount of math to transform the inputs to the outputs.
Anything you do with SQL, spreadsheets, images, music and video, and basically anything involved in rendering is pretty much untouchable. On the other hand, a limited number of use cases (cryptography, cryptocurrencies, maybe even AI/ML) might be much cheaper and fasrer with a quantum computer. There are possible military applications, so countries with big militaries are spending until they know whether that’s a weakness or not. If it turns out they can’t do any of the things that looked possible from the expectation peak, the whole industry will fizzle.
As for my opinion, comparing QC to early silicon computers is very misleading, because early computers improved by becoming way smaller. QC is far closer to the minimum possible size already, so there won’t be a comparable, “then grow the circuit size by a factor of ten million” step. I think they probably can’t do anything world shaking.
Quantum computers have no place in typical consumer technology, its practical applications are super high level STEM research and cryptography. Beyond being cool to conceptualize why would there be hype around quantum computers from the perspective of most average people who can barely figure out how to post on social media or send an email?
…and cryptography.
I think I’m a typical consumer, and if I’m not mistaken we use cryptography constantly (https and banking, off the top of my head). If quantum computers are important for cryptography, it’s hard to imagine “regular people” having no use.
We’re in the “grifters collecting donations” phase for the foreseeable future.
You’ve been able to buy a quantum computer for years, so trough of disillusionment.
although DARPA has them, so probably making our way through the trough of disillusionment.
DARPA feasibility studies:
https://www.theregister.com/2024/06/24/darpa_quantum_computer_benchmarking_papers/
available quantum computers:
https://quantumzeitgeist.com/how-to-buy-a-quantum-computer/
You’re not going to hear a lot about them the same way people didn’t hear about personal computers back in the '60s, but there are and have been many companies consistently working on improving the accuracy and power of quantum computers.
regular computers were around for decades before being successfully developed into personal machines with commercial utility, quantum computers are kind of in that zone roght mow, big room sized things that have a couple cubits.
but they are real and available, and the field is constantly in development
It’s debatable if D-Wave is actually a quantum computer at least in the sense most people use the term. There’s a lot of unanswered questions still on exactly how to use and design a quantum computer and we’re not likely to get those answers until we can reliably produce and run systems with at least 8 qubits. Maybe DARPA and the military/CIA has such systems, but I don’t think anyone else does.
Quantum computers are still mostly theoretical. We have some of the building blocks of one, but there’s still a few critical pieces missing. Quantum computers are in about the same place as fusion reactors are. Theoretically possible but not currently producible in a form that’s useful without a few more technological breakthroughs.
If the computers are using qubits instead of bits as processing power, then they’re a quantum computer, as far as i understand.
I think IBM’s most recent chip has a thousand qubits hang on-
IBMs quantum computer has 1121 cubits in their heron chip now in the quantum computer they’re producing now and are working toward 100,000 qubits per processor in the next decade.
https://www.forbes.com/sites/technology/article/top-quantum-computing-companies/
From your article,
What everyone should know, however, is that quantum computing is not yet a practical reality. No company has developed a device that can beat classical supercomputers at anything more than obscure research problems that have no real use.
Until quantum computing has its Alan Turing moment it will remain a curiosity. The power of qubits needs to be yoked as a beast of burden for computation and actual useful problem solving the way that digital computing was with the Turing machine. It’s not a certainty that this will ever happen.
Sometimes I think that believers in quantum computing’s superiority to digital computing are as silly as those who think we’ve almost proven P=NP. But who knows, both might be valid.
DARPA disagrees and the US has doubled billions of dollars of investment in the last few years testing available quantum computers.
ibm is increasing quantum processing power just like they do with regular computers.
Declaring that quantum computers is not yet a practical reality despite them being real and functioning, progressing and in use is akin to dismissing the wright brothers after their first successful flight.
if people doubted the wright brothers before they built and flew their plane?
understandable.
but doubting them after kitty hawk is popular willful ignorance, or an aversion to logical imagination.
It’s the same common perception about new technology until said tech becomes less-new and widely available, at which point everyone swears they saw it coming a mile away and it’s the only way things could have happened.
Electric cars is another great example, people have been moaning for 20 years that they are impractical and their batteries are difficult to manufacture and their capacity just isn’t up to snuff so they’ll never really take off like gasoline cars, and now everyone with any understanding of the auto industry has pretty much accepted the inevitability of EV dominance.
Okay, I was being somewhat flippant. I don’t discount there seems to be progress in some areas but slow and in low-visibility ways. I could even believe much more powerful quantum computers exist in state facilities around the world. Have they been shown to be useful though or there some bottleneck that prevents them from outcompeting digital computers?
An additional concern of mine is what they are useful for is in rapidly breaking vital digital algorithms like elliptical curve cryptography, and can’t be allowed in public hands for that reason. Someone elsewhere said there were computers with 1100 qubits, why is it taking so long to exploit these machines to do useful work? Or am I mistaken and there is evidence, I would love to see it.
Would a savvy investor put their money in quantum computing now, was the Wright Company a good buy when it first started? This actually has me on a deep dive about historical stock market graphs…
I personally think we’re on the slope of enlightenment - quantum computing no longer attracts as much hype as it used to, but in the background, there’s a lot of interesting developments that genuinely might be very important.
I’d agree, but that slope will be a long and hard one. And the hype cycle may have many more peaks and troughs of disillusionment, from new breakthroughs, but the researchers will still make steady progress.
Pretty sure QC is down at 0,0 right now. They haven’t gotten it to work in the way it’s been envisioned yet. The theory is there, but until something is quantifiably working, there’s basically no hype behind it.
I dunno if anyone except scientists and security people think about quantum computing at the moment.
Correct me if I’m wrong.
I’d say it’s still at the beginning of the curve. At the technology trigger phase. I don’t hear about it as much as I would expect
Either somewhere on the far left, and we’ll see some actual breakthrough with major impact in the future which actually gets hyped, or on the far right and it already happened, it was just too niche for anyone other than a specific small group to notice.
Btw: What a quantum computer can reliably do these days, is tell you 21 is 3 x 7. And it takes hours and quite some traditional computing to do that.
https://en.wikipedia.org/wiki/Integer_factorization_records#Records_for_efforts_by_quantum_computers
We’ve progressed a bit further than that. But for anyone interested in actual applications for quantum computers… They’ll have to wait. It’s research at this point. We’re making progress one step at a time. But so far no one has even demostrated we’re able to scale those computers to a useful size.
So I’d say we’re somewhere close to the origin of the axes. Or on a different graph for research that’s still science fiction. Together with nuclear fusion power plants, thorium cars, space ships and hypothetical battery chemistry that’ll make our electric cars go 5000 miles and not degrade over time.
[Edit: The Wikipedia Article: Quantum comuting also has some good references.]
That’s not entirely true. There are companies right now with prototypes solving real world problems.
If you have a concrete example I’d love to hear it
Sandbox AQ is one I’ve heard about. Pretty sure they are at least at the prototype stage.
That certainly counts as hype. But I wonder if there’s any independent information out there about these computers. All I can find is self-advertising and news about investors. I mean we occasionally do get these claims that someone proved quantum supremacy. But as far as I know the validity often isn’t clear or the results aren’t reproduced yet. And sadly I can’t skim the papers since lots of them aren’t open access.
And for research it doesn’t matter if you need days to cool down the computer just for one calculation. Or if most results are wrong due to noise and you have to re-do every computation on a traditional computer to check which results are correct. But I’d expect it takes them years or decades from a protopype like that to something actually useful. And as of now we haven’t even solved superconductivity or the temperatures or decoherence. So I’m always a bit careful with these claims frome the quantum startups.
And does the company you mentioned actually own a quantum computer prototype? Because it seems their focus is writing algorithms/software.
Looks like they do! I’d only heard about them in passing, but here’s an article: https://www.mdpi.com/1424-8220/24/16/5402
What exactly is holding QC back right now? Does it require near room-temp superconductivity to become viable or is it just in research phase right now?
I remember that AI/ML was held back mainly because of compute power to price ratio.
Schrödinger’s tech. It’s both real and flimflam at the same time.