https://www.lemonde.fr/planete/article/2024/08/04/climat-les-promesses-de-l-ia-grevees-par-un-lourd-bilan-carbone_6266586_3244.html

L’intelligence artificielle (IA) est-elle davantage un remède qu’un poison climatique ? Les géants de la tech, de Google à Microsoft, le clament haut et fort : les apports de ces technologies pour décarboner les économies et s’adapter au réchauffement seront à terme majeurs. A l’inverse, nombre d’experts préviennent que ces gains restent hypothétiques. L’empreinte carbone et la consommation électrique de services comme ChatGPT, d’ores et déjà importantes, risquent de devenir colossales. Ils appellent à la mesure face à une solution « utile » mais pas « miracle ».

Une meilleure connaissance du climat L’IA est considérée comme un outil efficace pour mieux comprendre le changement climatique et répondre aux incertitudes qui persistent. Elle est de plus en plus utilisée dans les prévisions météorologiques, comme s’y emploie le Centre européen pour les prévisions météorologiques à moyen terme (ECMWF), et pour les simulations du climat du futur. Google Research a ainsi dévoilé, le 22 juillet, dans la revue britannique Nature, une nouvelle approche, NeuralGCM, mélangeant IA et modèles climatiques fondés sur la physique, afin de simuler la météo et le climat de la Terre jusqu’à 3 500 fois plus vite que d’autres modèles et de manière autant, voire plus, précise sur une majorité de paramètres.

L’IA sert aussi à mieux anticiper les événements extrêmes, notamment « les incendies, les avalanches ou la trajectoire et les changements brusques d’intensité des cyclones », explique Claire Monteleoni, titulaire de la chaire Choose France AI et directrice de recherche à l’Institut national de recherche en sciences et technologies du numérique (Inria). Dans le cadre du projet de recherche européen Xaida, le climatologue Pascal Yiou fait, quant à lui, appel à l’IA pour savoir si ces catastrophes sont dues au changement climatique d’origine humaine – ce que l’on appelle la science de l’attribution.

Il utilise aussi l’IA pour prédire la survenue d’événements rares, comme des canicules historiques, afin de mieux préparer la société. « Nous avons, par exemple, réalisé 10 000 simulations de l’été 2024 pour savoir ce qui pouvait arriver », explique le directeur de recherche au Laboratoire des sciences du climat et de l’environnement. L’exercice a pris une semaine pour former l’IA puis une dizaine de minutes pour produire des résultats. Deux ou trois mois auraient été nécessaires avec des modèles de climat qui tournent sur des supercalculateurs. « L’IA nous permet de tester davantage d’hypothèses et de répondre à des questions de recherche jusqu’à présent inaccessibles », juge M. Yiou.

Des solutions pour réduire les émissions de CO2 L’IA commence à être utilisée pour accélérer la transition écologique. « Elle est bien adaptée, car les problématiques du climat sont complexes et multifactorielles, donc difficiles à gérer », estime Gilles Babinet, coprésident du Conseil national du numérique et auteur de Green IA. L’intelligence artificielle au service du climat (Odile Jacob, ‎224 pages, 22,90 euros).

Mme Monteleoni explique collaborer avec EDF « pour mieux comprendre où installer des éoliennes en fonction des modifications des vents liés au changement climatique ». L’IA peut aider à optimiser les réseaux électriques, responsables d’un quart des émissions mondiales de gaz à effet de serre, « en sachant prédire où c’est ensoleillé ou venteux dans les jours qui viennent, afin de maximiser la production de renouvelables et moins s’appuyer sur d’autres sources d’énergie plus sales », poursuit-elle.

Les autres exemples d’usages sont légion : observer et inventorier les émissions de millions de sites polluants à travers le globe et traquer la déforestation, développer de nouveaux matériaux, par exemple de meilleurs composants de batteries, optimiser les systèmes de chauffage et de climatisation dans les bâtiments, améliorer l’agriculture de précision, pour limiter les intrants ou l’irrigation, comme les recense une vaste étude, publiée en 2022, par une vingtaine d’universitaires et d’experts de la tech, dont Google.

« Nous voyons l’IA comme une occasion pour le climat », résume Adam Elman, responsable du développement durable pour l’Europe, l’Afrique et le Moyen-Orient chez Google. Parmi ses services, il cite Google Maps, qui, grâce aux données sur la topologie ou le trafic routier, « propose des itinéraires qui minimisent l’utilisation de carburant ». « Depuis 2021, cela a évité 2,9 millions de tonnes de CO2, soit l’équivalent de 660 000 voitures retirées de la route par an », assure-t-il. Les thermostats Nest, de Google, qui peuvent contrôler automatiquement le chauffage et la climatisation d’un domicile, auraient, eux, permis d’économiser 7 millions de tonnes de CO2, toujours selon l’entreprise. Le groupe a également effectué des tests pour réduire, grâce à l’IA, les traînées de condensation des avions, qui aggravent le réchauffement climatique.

Quel pourrait être l’impact pour le climat de l’ensemble de ces pistes ? Il n’existe pas de chiffres ayant fait l’objet d’études approfondies. Les solutions liées à l’IA, si elles étaient mises en œuvre largement, pourraient réduire les émissions de CO2 mondiales de 5 % à 10 %, d’ici à 2030, assure un rapport du Boston Consulting Group commandé par Google. Mais cette estimation n’est qu’une simple extrapolation à partir d’un article de 2021 racontant quelques cas de clients du cabinet de conseil. Un rapport de PwC sur quatre secteurs, financé par Microsoft en 2019, avançait, lui, une fourchette de baisse de 1,5 % à 4 %, d’ici à 2030. Des chiffres que remet en cause Hugues Ferreboeuf, spécialiste du numérique au cercle de réflexion The Shift Project : « Toutes les approches sérieuses mettent en avant l’impossibilité de généraliser à partir de cas d’étude spécifiques. »

Une empreinte carbone en pleine expansion L’enjeu est de taille, car l’IA a d’ores et déjà un coût environnemental important : celles génératives, capables de créer des textes, des images ou des vidéos, nécessitent énormément de calcul informatique, lors de la phase d’entraînement mais surtout d’utilisation. Une requête sur un assistant comme ChatGPT consomme dix fois plus d’électricité qu’une recherche sur Google, selon l’Agence internationale de l’énergie (AIE).

Selon l’organisation non gouvernementale (ONG) Data For Good, spécialisée dans la production de données sur les technologies, 100 millions d’utilisateurs de la dernière version de ChatGPT, avec une conversation par jour, émettraient autant de CO2 en un an que de 100 000 à 364 000 Français. Or, ce type d’assistants d’IA est en cours de déploiement sur le moteur de recherche de Google, les réseaux sociaux de Meta, les smartphones Apple ou Samsung… Les centaines de milliards d’euros investis dans les centres de données par les géants du numérique, en grande partie pour répondre aux besoins de l’IA, ont d’ores et déjà fait bondir leurs émissions de CO2, en raison de la construction des bâtiments et de la fabrication des processeurs : en 2023, + 30 % pour Microsoft et + 13 % pour Google (+ 50 % depuis 2019).

Ce décrochage lié à l’IA remet-il en cause l’objectif de « zéro carbone en 2030 » fixé par Microsoft ou Google ? « Nous sommes très engagés dans la poursuite de cet objectif », assure M. Elman, de Google, tout en soulignant que ce but est « très ambitieux et difficile à atteindre ». Les géants du numérique misent sur leurs achats d’énergies renouvelables et leurs efforts d’efficacité énergétique pour y parvenir.

« Nous pensons que les bénéfices de l’IA pour le climat vont significativement dépasser les aspects négatifs », assure surtout M. Elman, de Google, comme les dirigeants de Microsoft. L’IA ne serait responsable que d’environ 0,01 % des émissions mondiales, selon un article cosigné par des experts de Microsoft, qui ont appuyé leur calcul sur la consommation électrique des processeurs réservés à l’IA en 2023.

Ces estimations sont contestables, rétorque M. Ferreboeuf, du Shift Project : « D’ici à trois ans, la part de l’IA va passer de 8 % à 45 % dans la consommation électrique des centres de données, qui va doubler », explique-t-il, citant des chiffres du cabinet SemiAnalysis. En 2026, l’IA pourrait donc représenter environ 0,9 % des émissions mondiales et les centres de données environ 2 % [contre 0,6 % en 2020], selon l’AIE, estime-t-il. « De plus, le raisonnement en pourcentage n’est pas pertinent, insiste l’expert. Ce qu’il faut, c’est savoir si les émissions absolues baissent de 5 % à 7 % par an, comme le prévoit l’accord de Paris. »

« C’est très dur d’avoir un débat sur le bilan de l’IA » en raison du « manque de chiffres étayés », déplore Sasha Luccioni, spécialiste de la consommation électrique à la start-up d’IA Hugging Face. Elle pointe de plus le risque d’un « effet rebond » qui contrebalance les gains d’efficacité énergétique en faisant augmenter les usages. Et note qu’il faudrait aussi intégrer les activités carbonées que l’IA favorise, comme l’extraction pétrolière : TotalEnergies a noué un partenariat avec Google et Exxon Mobil avec Microsoft…

Une consommation électrique croissante Au-delà des émissions de CO2 des centres de données, leur consommation électrique croissante suscite des inquiétudes : elle pourrait plus que doubler, d’ici à 2026, et passer de 1,7 % à entre 2 % et 3,5 % de la demande mondiale, selon les estimations de l’AIE, qui y inclut les cryptomonnaies. Outre des problèmes liés à l’eau utilisée pour refroidir les processeurs, cette expansion fait craindre des pénuries locales d’électricité ou des conflits d’usages, par exemple avec les voitures électriques.

De plus, pointe M. Ferreboeuf, il y a un risque d’accaparement des ressources limitées en énergies renouvelables : Amazon, Meta, Google et Microsoft ont, à eux seuls, acheté 29 % des nouveaux contrats d’éolien et de solaire dans le monde, en 2023, selon Bloomberg.

Sur les perspectives à long terme, certains apôtres de l’IA assument une explosion des besoins. « L’IA nécessitera de produire le double de l’électricité disponible dans le pays, vous imaginez ? », vient de prévenir le candidat à la présidentielle américaine Donald Trump. « Il n’y a pas moyen [de couvrir les besoins énergétiques de l’IA] sans une avancée scientifique », avait déjà prophétisé, en janvier, Sam Altman, le fondateur d’OpenAI, espérant des percées dans la fusion nucléaire, vue comme une « énergie propre et illimitée ».

Vers une autre IA ? « L’IA générative incarne le technosolutionnisme, ou le mythe de la technologie qui va nous sauver », déplore Lou Welgryn, coprésidente de Data For Good. Présenter l’IA comme une solution à la crise environnementale risquerait de dissuader la société d’agir et d’aller vers davantage de sobriété. L’argument servirait aussi à verdir l’image d’une technologie qui, pourtant, « met sous stéroïdes notre économie actuelle, très carbonée » et favorise la croissance, la publicité et la surconsommation, regrette-t-elle.

L’urgence serait de questionner les usages de l’IA, notamment générative. Et même d’y renoncer dans certains cas. Le référentiel publié fin juin par l’organisme de certification Afnor invite ainsi à préférer, si possible, « une autre solution moins consommatrice pour répondre au même objectif ». Et à privilégier une « IA frugale ». Le principe est là de recourir à des modèles d’IA moins puissants ou moins généralistes pour traiter les requêtes les plus simples ou des usages plus spécifiques.

« Entre le technosolutionnisme et la décroissance, il y a une troisième voie possible », pense M. Babinet. Selon lui, il faut encourager les usages utiles de l’IA, qui, souvent, ne nécessitent pas d’IA générative, et « décourager » les usages futiles et gourmands en calcul, comme la génération d’images sur les réseaux sociaux. « Il faut donc faire payer le vrai prix de l’environnement », poursuit-il, proposant d’intégrer les services numériques comme l’IA dans le mécanisme d’ajustement carbone aux frontières par lequel l’UE va taxer des produits en fonction de leurs émissions de CO2.

Sasha Luccioni ou Frédéric Bordage, de l’ONG Green IT, souhaitent, eux, la création d’une sorte « d’écoscore » qui, à la manière du Nutri-Score pour les aliments, ferait la transparence sur les coûts environnementaux des modèles d’IA, afin d’orienter les usages. Dans cet esprit, l’Afnor a énoncé des méthodologies de calcul pour mesurer l’impact environnemental de l’IA, afin de communiquer « avec des allégations justes et vérifiables ». Et « sans greenwashing », précise le communiqué.

Audrey Garric et Alexandre Piquard

  • keepthepace@slrpnk.net
    link
    fedilink
    Français
    arrow-up
    2
    ·
    edit-2
    1 year ago

    Ils sont longs…

    Le 2e a l’air de juste parler du marketing de la silicon valley, ça m’intéresse pas. Je suis anticapitaliste, qu’ils mangent leurs morts. Les startups d’IAs sont des boites capitalistes comme les autres, je le sais, je m’en fous, y a aucun sujet spécifique à l’IA là. (hésite pas à me dire si je suis passé trop vite sur un argument important de l’article pas évoqué dans l’intro)

    Passons à l’autre.

    Le premier article commence avec les poncifs habituels: IA = silicon valley et datacenters = IA.

    Non, la révolution actuelle en IA elle a commencé dans des labos, financés par des fonds publics, avec des chercheurs qui ont tourné plus autour du Canada que de San Francisco. (On l’attribue à trois “parrains”: Bengio, Hinton et Le Cun auquel on ajoute parfois Ilya Sutskever)

    La révolution du deep learning, elle est profonde. Dans la rechercher, dans l’informatique. On a résolu le problème de repliement des protéines, la reconnaissance vocale, la reconnaissance visuelle et le contrôle robot. OpenAI peut couler demain, ces révolutions restent.

    En ce qui concerne les datacenters, leur source est assez mauvaise. Ils donnent la conso des datacenters d’une seule ville des US, la plus importante en la matière, mais loin de concentrer 100% de la puissance de calcul mondial. Voici plutôt des estimations de l’IEA que je recopie d’un autre post:

    page 35

    Petit rappel, la conso mondiale c’est plus de 20 000 TWh, les datacenters du monde sont à moins de 2% et la part “IA” là dedans est minuscule.

    Donc souvenez vous que quand on vous dit que la conso de l’IA c’est la conso des datacenters, on vous la fait à l’envers.

    Je trouve un peu cyniquement que cette citation pose l’ambiance:

    l’intelligence artificielle, cette entité divine que nos incantations invoquent depuis son nuage magique de données, est en réalité une gigantesque infrastructure physique et qu’elle se trouve pour partie autour de la ville d’Ashburn

    On part de la pensée magique, la barre est basse les copains. Donc oui, les IAs, c’est pas arrivé par intervention divine, ça s’entraîne sur des clusters de GPU, ça a besoin de beaucoup de VRAM à entraîner, beaucoup moins à faire tourner (une chose qu’on oublie souvent, mais vous pouvez faire tourner de la génération d’image, de son et de texte localement sur un PC). C’est pas magique et c’est même pas secret! L’architecture GPT est publique, et les modèles de Meta, Mistral et plein d’autres sont ouverts et gratuits à réutiliser.

    Y a peu de technos dans l’histoire qui ont été développées de façon aussi ouverte. On le doit beaucoup aux chercheurs qui, s’ils et elles ont rejoint des grosses boites pour des salaires mirobolants, ont aussi insisté pour continuer à faire de la recherche, c’est à dire à publier de façon ouverte. La communauté open-source est à fond, décidée à pas lâcher la course et trouver tous les moyens d’empêcher une douve propriétaire d’apparaître.

    On aimerait un peu d’aide ou au moins un peu d’encouragement de la part des humanistes capables d’imaginer la société post-travail, mais voila, on en est là, à devoir démonter des idées fausses assemblées pour assouvir le besoin de pessimisme d’une population généralement technophobe, car confondant progrès technologique et silicon valley. Ce qui, soit dit en guise de conclusion, est une des plus grandes impostures intellectuelles de ce siècle.

    • le_pouffre_bleu@slrpnk.net
      link
      fedilink
      Français
      arrow-up
      0
      ·
      1 year ago

      Merci beaucoup, je n’ai malheureusement pas le temps d’y réagir longtemps (en plus d’avoir appuyer malencontreusement sur annuler après avoir finit le premier message)

      Je réagirait juste propos de ça :

      Le 2e a l’air de juste parler du marketing de la silicon valley, ça m’intéresse pas. Je suis anticapitaliste, qu’ils mangent leurs morts. Les startups d’IAs sont des boites capitalistes comme les autres, je le sais, je m’en fous, y a aucun sujet spécifique à l’IA là.

      Camarade, ce ne sont pas nos imaginaires et récits qui donne l’orientation du déploiement à grande échelle de ces technologies, c’est bien le récit capitaliste et son marketing. Des personnes comme toi qui cherchent à faire émerger une autre voie sont indispensables mais il me semble assez candide de croire qu’une partie de de cette démarche et assimilé par les boites de la silicone vallée (Internet pour tous ausi à ses début on parait d’utopie) et que l’essor de l’usage de ces techno puisse être diviser en fonction des intentions des personnes qui ont bosser en premier leur dessus. Surtout que ces marketing narratifs est aussi partagé et défendu par nos dirigeants politiques, même si pas forcément partagé par une partie du personnel administratif, ce qui fait que ce contester de ce que veux (ex : le rêve mouillé de surveillance dystopique qui est en train de se réaliser) va de le sens d’un partenariat avec ces grandes boites et rien ne dis que si un stop leur mis les États ne se réappropriation pas les mêmes usages…

      . (hésite pas à me dire si je suis passé trop vite sur un argument important de l’article pas évoqué dans l’intro)

      Je dirai que tu te place une ouillière que te fais voir avec plus de difficulté les arguments développé justement.

      on en est là, à devoir démonter des idées fausses assemblées pour assouvir le besoin de pessimisme d’une population généralement technophobe, car confondant progrès technologique et silicon valley. Ce qui, soit dit en guise de conclusion, est une des plus grandes impostures intellectuelles de ce siècle.

      Je ne suis pas certain que parler de technophobe soit approprier, on peut critiquer ou être opposé à l’utilisation et au développement d’une techno sans pour autant être technophobe, un bon exemple c’est nucléairepunk vs solarpunk. Pour moi la plus grande imposture c’est plutôt la confusion entre progrès technologique et progrès humain et dissocier les implications sociaux-politiques et environnementales de la recherche en science appliqué.

      Oui les progrès de l’IA pour la médecine et la pharmacologie sont incroyables et merveilleux (presque magique en vrai dans ce que ça permet ;) )mais si les gains offert par ces progrès sont indissociables du développement et déploiement de technologie qu’Orwell ne pouvait même imaginer est-ce qu’on peut toujours parler de progrès technologiques enviable, e dis ça parce que souvent quand on parle bénéficie/risque des IAs dans les médias (je pense en particulier à une émission radiofrance) on a souvent droit à un association des deux sans chercher à distinguer les critiques pour chaque domaine.

      J’ai réécrit à la va vite, je suis un peu frustré le premier message était mieux formulé j’espère que celui-ci est quand même compréhensible

    • Wi(vΛ)lem Ort(Λv)iz@jlai.lu
      link
      fedilink
      Français
      arrow-up
      0
      ·
      1 year ago

      J’avais pas l’intention de commenter, mais il faut quand même dire que ta lecture de la citation sur l’ “entité divine” est extrêmement biaisée, puisque tu n’es pas même plus capable de déceler une figure de style, ni d’avoir le recul critique sur le climat général au sujet de l’IA (qui en fait effectivement une forme d’incantation) :

      On part de la pensée magique, la barre est basse les copains. Donc oui, les IAs, c’est pas arrivé par intervention divine,

      Sur le reste, je trouve que certains de tes arguments sont intéressants sur le coût de l’entraînement mis en rapport avec le fonctionnement du code et la disponibilité des modèles, mais tout ça est noyé dans un techno-solutionnisme que tu refuses d’admettre, et ça décrédibilise le reste.

    • nicocool84@sh.itjust.works
      link
      fedilink
      Français
      arrow-up
      0
      ·
      1 year ago

      On a résolu le problème de repliement des protéines

      Haha je voulais pas forcément remettre une pièce dans la machine mais en te répondant je lis les nouveaux messages du thread et je ne peux résister à voir encore là un signe de ton sur-enthousiasme sur le machine learning. Non, le problème n’est pas “résolu”. D’ailleurs GPT-4o aurait pu te le dire.

      Question: Est-ce que le problème de repliement des protéines a été résolu par l’IA?

      Le problème de repliement des protéines, qui consiste à prédire la structure tridimensionnelle d’une protéine à partir de sa séquence d’acides aminés, a fait des avancées significatives grâce à l’intelligence artificielle, notamment avec des outils comme AlphaFold développé par DeepMind. AlphaFold a démontré une capacité impressionnante à prédire les structures des protéines avec une précision comparable à celle des méthodes expérimentales.

      Cependant, bien que ces avancées soient prometteuses et aient résolu de nombreux cas complexes, le problème n’est pas entièrement “résolu” dans le sens où il reste encore des défis à relever, notamment pour certaines protéines difficiles à modéliser ou pour des complexes protéiques. La recherche continue dans ce domaine, et l’IA joue un rôle de plus en plus important dans la compréhension et la prédiction des structures protéiques.

      ;-)