• skillissuer@discuss.tchncs.de
    link
    fedilink
    English
    arrow-up
    1
    ·
    il y a 10 mois

    there’s not enough lithium on this planet to store enough energy for like half of europe nevermind entire world

    you know how to do this the right way? use pumped-storage hydropower. need more? build more, then dump power into heaters (or better yet heat pumps) on demand from grid since fossil fuel heating will be replaced anyway. (we’re nowhere close to this, but it can sink a lot of energy quickly while not using it at some other times)

    • cygnus@lemmy.ca
      link
      fedilink
      English
      arrow-up
      2
      ·
      il y a 10 mois

      there’s not enough lithium on this planet to store enough energy for like half of europe nevermind entire world

      This is a good use case for sodium batteries. They’re less energy-dense so not great for vehicles, but for a stationary application like this they’re perfect.

      • skillissuer@discuss.tchncs.de
        link
        fedilink
        English
        arrow-up
        0
        ·
        il y a 10 mois

        yeah this is fine, but these need to run at high temperatures last time i’ve checked. that makes it a bit more complicated to use

        • ProdigalFrog@slrpnk.net
          link
          fedilink
          English
          arrow-up
          1
          ·
          edit-2
          il y a 10 mois

          Sodium electric batteries, like the type that CATL developed? Or do you mean hot molten salt thermal batteries? Because I think the other poster is referring to the first kind.

          • skillissuer@discuss.tchncs.de
            link
            fedilink
            English
            arrow-up
            1
            ·
            edit-2
            il y a 10 mois

            i thought sodium batteries need low hundreds C for ceramic electrolyte to work. i stand corrected

            e: CATL made sodium-ion battery, i was thinking of sodium-sulfur battery

    • MrVilliam@lemmy.world
      link
      fedilink
      English
      arrow-up
      2
      ·
      il y a 10 mois

      there’s not enough lithium

      I am hopeful that developments in sodium ion battery tech will yield different strategies. The weight and energy densities vs cost and abundance mean that it makes more sense (at this time at least) to reserve lithium ion battery tech for more mobile use cases like handheld devices and EVs, but use sodium ion battery tech for things like grid storage or home energy management solutions. I dream of a day in the next decade or two in which virtually nobody bothers to have a generator for emergency home power and instead opts for a UPS with inverters and chargers hooked up to a home battery, allowing not only emergency power, but a “smart” system to power the home via battery during high grid demand and charge during low demand, normalizing grid supply curves and making power bills cheaper for all. The path to this starts with big scale early adopters like hotels and apartment buildings, which could easily supplement energy needs through solar panels on their large roofs at the same time.

      For all the enshittification we’re seeing across most industries, I am cautiously optimistic that we might be living at the edge of an energy revolution. We may see fucking huge fundamental changes to our energy infrastructure within our lifetimes, and that’s one of the few things I’m excited about for the near future. It’s unfortunate that it’s taking a crisis to force these changes, but it would be a great pivot nonetheless.

      • skillissuer@discuss.tchncs.de
        link
        fedilink
        English
        arrow-up
        1
        ·
        il y a 10 mois

        i think that in order for that to happen we have to change the way we think about energy. more of use it when it’s available, and less use it on demand

    • Addv4@lemmy.world
      link
      fedilink
      English
      arrow-up
      1
      ·
      il y a 10 mois

      There are plenty of alternatives for lithium batteries, chiefly sodium and a redox flow. Heating/cooling is good as well to store, but not every structure is energy efficient enough that it would make much sense. Good thing to work towards, but grid batteries would probably be faster and easier to implement. I have reservations towards pumped hydropower, in part due to watching how hard it is to decommission a lot of hydroelectric dams these days in US as well as the cost to create the areas to hold the water (a lot of the areas that are geographically advantageous for pumped hydropower tend to be nature reserves or national parks, soo…).

      • Boomer Humor Doomergod@lemmy.world
        link
        fedilink
        English
        arrow-up
        0
        ·
        il y a 10 mois

        Since most energy is used for heat, storing it as heat makes a lot of sense, and there are sand thermal storage systems that can scale from single household to whole neighborhoods.

    • Fermion@feddit.nl
      link
      fedilink
      English
      arrow-up
      0
      ·
      il y a 10 mois

      Pumped hydro is both very geologically limited and environmentally detrimental. That technology alone will not substantially reduce the need for other power storage technologies/ peaker plants.

      • skillissuer@discuss.tchncs.de
        link
        fedilink
        English
        arrow-up
        2
        ·
        il y a 10 mois

        at least it works at scale relevant to grids. there are other interesting devices that store high grade heat in things like molten silicon or sand, then convert it to electric energy again, but it’s rather at prototype scale now i think. power to hydrogen is fine if it’s replacing hydrogen from natural gas, but it’s wack for storage of energy

      • tal@lemmy.today
        link
        fedilink
        English
        arrow-up
        0
        ·
        edit-2
        il y a 10 mois

        Pumped hydro is both very geologically limited and environmentally detrimental.

        If you are willing to live with the very considerable impact and are willing to do a costly megaproject, one possibility that I’ve raised before: it’d be possible to go implement Atlantropa, but instead of using it (exclusively) to generate hydroelectric power, as its creator envisioned, use it for pumped storage. The world will never need more energy storage than that could provide.

        https://en.wikipedia.org/wiki/Atlantropa

        Atlantropa, also referred to as Panropa,[1] was a gigantic engineering and colonisation idea that German architect Herman Sörgel devised in the 1920s, and promoted until his death in 1952.[2][3] The proposal included several hydroelectric dams at key points on the Mediterranean Sea, such as the Strait of Gibraltar and the Bosporus, to cause a sea level drop and reclaim land.

        The central feature of the Atlantropa proposal was to build a hydroelectric dam across the Strait of Gibraltar, which would have generated enormous amounts of hydroelectricity[4] and would have led to the lowering of the surface of the Mediterranean Sea by as much as 200 metres (660 ft), opening up large new areas of land for settlement, such as in the Adriatic Sea. Four other major dams were also proposed:[5][6][7]

        • Across the Dardanelles to hold back the Black Sea
        • Between Sicily and Tunisia to provide a roadway and to lower the inner Mediterranean further
        • On the Congo River below its Kasai River tributary, to refill the Chad basin around Lake Chad, provide fresh water to irrigate the Sahara, and create a shipping lane to the interior of Africa
        • Extending the Suez Canal and locks to maintain connection with the Red Sea

        Sörgel saw his scheme, which was projected to take more than a century, as a peaceful pan-European alternative to the Lebensraum concepts that later became one of the stated reasons for Nazi Germany’s conquest of new territories. He envisioned Atlantropa as a way of providing land, food, employment, electric power, and, most of all, a new vision for Europe and neighbouring Africa.

        There are two very considerable issues there:

        • First, dropping the Mediterranean Sea by 200 meters is going to have a very large impact on the coasts of northern Africa and southern Europe. Sörgel considered that desirable, but obviously there are going to be a lot of people who don’t like such a change.

        • Second, if it’s permitted to build structures in this new area – as was originally intended – then a rupture of the dams would produce cataclysmic flooding; we would essentially have recreated the Zanclean flood:

          Ninety percent of the Mediterranean Basin flooding occurred abruptly during a period estimated to have been between several months and two years, following low water discharges that could have lasted for several thousand years.[3] Sea level rise in the basin may have reached rates at times greater than ten metres per day (thirty feet per day). Based on the erosion features preserved until modern times under the Pliocene sediment, Garcia-Castellanos et al. estimate that water rushed down a drop of more than 1,000 metres (3,000 ft) with a maximum discharge of about 100 million cubic metres per second (3.5 billion cubic feet per second), about 1,000 times that of the present-day Amazon River.

          The Royal Air Force bombed two dams in Germany during World War 2 to flood an industrial area in Germany. Russia just blew up a hydroelectric dam in Ukraine that caused a mess and water to drop upstream by 2 meters. If such a dam were to be attacked in a war like that, it would be horrendous. We’d be talking about a water depth difference a hundred times that and a far larger area.

        EDIT: And a third, I suppose – if you take water out of the Mediterranean via evaporation and pumping, it will eventually wind up elsewhere, and we live in an era where sea level rise is already a concern, so it’ll cause sea level rise elsewhere. Would eliminate concerns about sea level rise for the Mediterranean, though…