• 0 Posts
  • 10 Comments
Joined 2 years ago
cake
Cake day: August 17th, 2023

help-circle
  • Keep in mind, still discussing the underlying fundamentals and not the user experience.

    MitM attacks are frequently covered in white hat hacking, often after an actual event takes place. It is considered a third party attack, and it does break trust. It is a security threat, and to claim it doesn’t count is absurd. I’ve seen a few reports personally from internal, but I’m not at liberty to speak specifics about them. On the topic of replay attacks, TOTP is vulnerable, but passkeys are not (yet, I’ve seen people try though). This isn’t the only type of MitM attack, and, again, both are somewhat vulnerable.

    TOTP is nothing, nowhere similar to passkeys in any way. You do NOT generate codes with passkeys. Passkeys are a form of public/private keys that are used to create a challenge/response request and used to generate a digital signature. The keys are not passwords (aka “shared secrets”). Digital signatures are also not passwords. The only other thing I can think you mean by “code generation” is that you’re using it as a generic catch-all, but that happens with…well everything (even passwords), depending on context.

    I don’t want to sound too much like a die hard passkey fan - and you are right - passkeys are extremely overkill if you use anything above a plain old password. In some cases, layered security can be just as effective. The problem is that most people do only use plain old passwords. If we can get any kind of extra security, even TOTP, then all the better. There are also some cases passkeys are not feasible, so it’s good to have alternatives.


  • That’s false, TOTP can and has been the target of man in the middle attacks, successfully. The implementation of passkeys makes man in middle attacks more difficult, but it could still happen. So both are susceptible to third parties to some degree.

    As far as point of view, I was assuming we were talking about the process, since the goal of passkey UX is to be largely the ‘same as’. Which, to be frank, is way less dedicated since both the implementation of passwords and passkeys can vary widely (2fa, email, id, otp, etc). If we exclude those, the UX is the same - some users might be even using passkeys and not know it.



  • Perhaps he means the process of setting it up. Or when it doesn’t work. Or when passkeys are lost. Or using another device. A lot of people’s complaints about passkeys aren’t really about when it works.

    It’s valid I think, but also some people forget passwords can have similar experiences. For one, there seems to be this idea that if you lose your passkey you get locked out of your account forever. The recovery process should be no different than losing your password.


  • No. It’s a completely different process. It’s a bad name for what it actually does. (Unless you’re talking about how computers do things, then EVERYTHING is numbers)

    Look up public/private key pair encryption. It’s the process that has changed.

    The problem with all these “what are passkeys” guides is that it’s difficult to convey the differences between password and passkeys if you don’t have a deep understanding of encryption or authentication systems.



  • Pagers are not guaranteed to be 1 way comms and bringing them into secure locations is a security violation. Additionally, depending on the classification, no unauthorized and undisclosed devices of any kind would be permitted, including any electronics or electronic media such as tapes, CDs, discs, etc. Even when I was issued a verified 1-way pager, I was specifically briefed I was not permitted to bring it into a classified location. Most of the highly classified SCIFS are shielded anyways, you can’t use it inside so it’s safer to leave it out, along with all other devices.

    If your organization allows it, then (if federal) they are breaking the law and should be reported/up-channeled. If it’s corpo, you should bring up additional concerns with your security team.

    Edit: Also, it goes without saying, current events are probably a good reason why pagers (and other devices) aren’t allowed in classified areas. While most focus on disclosure (getting out), we must not forget the risk of data/operations getting destroyed.


  • Close, but you are still trusting the device you own. If I were to compromise that device, I could capture that key and use it. Again, this is my limited understanding, but a zero trust solution works in such a way that the actual keys are not stored anywhere. During setup, new temporary keys are generated. A keypass binds to the temporary key for use of authentication. The temporary key can be revoked at any time for any reason, whether it’s due to a breach or routine policies. It can be as aggressive as it needs, and the implication is that if someone else (either you or an attacker) got issued a new temporary key then the other would not receive it. Using an incorrect temporary key would force an initialization again, using the actual keys that aren’t stored anywhere.

    The initialization process should be done in a high trust environment, ideally in person with many forms of vetting. But obviously this doesn’t take place online, so there is the risk that your device is not trusted. This is why the process falls back on other established processes, like 2FA, biometrics, or using another trusted device. How this is done is up to the organization and not too important.

    But don’t get too hooked on the nuances of passwords, keys, passkeys,etc. The entire purpose is to limit trust, so that if any part of the process is compromised, there is nothing of value to share.

    Disclosure: Worked in military and this seems to be a consumer implementation of public/private key systems using vector set algorithms that generate session keys, but without the specialized hardware. It’s obviously different, but has a lot of parallels, the idea in this case is that the hardware binds to the private/public keys and generates temporary session keys to each unique device it communicates with, and all devices can talk with members of it’s own vector set. Capturing a session key is useless as it’s constantly being updated, and the actual keys are stored on a loading device (which is subsequently destroyed afterwards, ensuring the actual key doesn’t exist anywhere and is non recoverable, but that’s another thing altogether). My understanding of passkey systems is solely based on this observation, and I have not actually implemented such a solution myself.


  • From my understanding it’s the concept of trust. Basic passwords are complete trust that both ends are who they say they are, on a device that is trusted, and passing the password over the wire is sufficient and nobody else tries to violate that trust. Different types of techniques over time have been designed to reduce that level of trust and at a fundamental level, passkeys are zero trust. This means you don’t even trust your own device (except during the initial setup) and the passkey you use can only be used on that particular device, by a particular user, with a particular provider, for a particular service, on their particular hardware…etc. If at any point trust is broken, authentication fails.

    Remember, this is ELI5, the whole thing is more complex. It’s all about trust. HOW this is done and what to do when it fails is way beyond EIL5. Again, this is from my own understanding, and the analogy of hardware passwords isn’t too far off.


  • Bought stove last March. Was cooking on it in Dec and the glass top melted. It’s clearly melted and the glass is not cracked. Called it in, and they lost my claim. I sent another and they sent out their own specialist. The guy was a Samsung shill, and he only looked at the stove and, without talking to me as I’m standing there, called it in and said it was cosmetic damage caused by user. He then left telling me that my stoves warranty ran out 3 months after I bought it and that I had to call it in again to get their determination. I did, and they said the claim was closed out citing I caused the damage.

    So, either Samsung thinks I took a blowtorch to it, or they refuse to perform a proper diagnostic or send an independent technician. They would prefer my house to burn down, than to admit even a little bit of fault. Worse still, I don’t know what to do, because any action I take would get ignored (they haven’t responded to bbb or states consumer protection reports and both have no legal authority to make them). Trying to repair it myself would allow them to push harder on user fault, and I don’t have money to take legal action.

    If that wasn’t bad enough, my sister is going through the same thing with a dryer she bought that died 4 days before the warranty expired.