Sir_Osis_of_Liver
- 0 Posts
- 9 Comments
Yeah, the “difficult” part, I don’t understand. I’m 56 and figured out /kbin and Mastodon and how federation works within a few hours. So far, so good.
I was around for the early days of Fark, Digg, Twitter and Reddit. New sites are rough around the edges. That’s just the way it is. Things will get sorted in due time.
Sir_Osis_of_Liver@kbin.socialto World News@beehaw.org•Sweden adopts new fossil-free target, making way for nuclear4·2 years ago“Regulatory sabotage” is the latest talking point put out by the nuclear lobby. It’s a fabrication. Regulations were built based on incidents and accidents in the past. Building nukes on the cheap would be like building deep-sea submersibles without certifications. It’ll work fine, until it doesn’t.
Certification and licensing only make-up a tiny percentage of a plant’s upfront costs. Typically it’ll be dumped in with engineering/design costs and those would be down around 15% of capital costs, depending a lot on the project.
The French government has traditionally been very pro-nuclear, and the industry has broad support from the population aside from the Green movement. They have had extensive incentive programs for the industry, both domestic and for export. And yet, they have had no better luck in building plants on time and budgets. Flamanville-3 is the poster child for overbudget nuclear projects. Construction started in 2007, was supposed to be on-line in 2012, but is currently projected to be completed in 2024. The budget went from €3.3B to an estimated €20B as of a 2019 French court audit.
The “oil industry” doesn’t care about nuclear at all. Oil fired generators haven’t been a thing since the oil shocks of the 1970s. The few that are still around are typically used as backup or peakers, as they’re ridiculously expensive to run.
The coal industry would be so inclined, but in the US, coal plants have dropped from ~65% of generation to less than 20% of generation over the last 30 years. New plants are almost as expensive to build as nuclear, and as the plants get to end of life, they’re being decommissioned rather than refurbished. The writing is on the wall.
Of the fossil fuel industries, only natural gas is competitive, and the plants are far, far cheaper to build than about anything else. They are the preferred type of new generation for utilities that have access to gas. Only regulation or government mandates really slow down new gas plants.
Sir_Osis_of_Liver@kbin.socialto World News@beehaw.org•Sweden adopts new fossil-free target, making way for nuclear3·2 years agoLosses are a lot lower with DC transmission, but it has been traditionally more expensive. Costs are coming down now as more research and better power electronics are becoming available.
Edit. Here’s a pretty well know one in the US, the Pacific Intertie
Sir_Osis_of_Liver@kbin.socialto World News@beehaw.org•Sweden adopts new fossil-free target, making way for nuclear9·2 years agoRight now Sweden has adequate baseload, they are well positioned to go with more renewable.
UHVDC and HVDC links can be used to transmit power over thousands of kms. I think the longest line currently is in China a 1100kVDC line that stretches over 3300kms.
Even with conventional AC transmission, power generated in Churchill Falls and James Bay eventually ends up in population centres in Southern Canada and New England.
Sir_Osis_of_Liver@kbin.socialto World News@beehaw.org•Sweden adopts new fossil-free target, making way for nuclear18·2 years agoOr, now hear me out, people actually know the history of the most recent projects and are reacting based on information.
Olkiluoto-3 was supposed to cost €3B, and ended up being approximately €11B.
Flamanville-3 was supposed to cost €3.3B and will likely end up costing in excess of €20B.
Hinkley Point C was supposed to cost £16B, but will likely end up about £27B.It’s the same in the US:
V.C. Summer 2&3 was supposed to be $9B, but was cancelled while under construction, once total costs were projected to hit $23B.
Vogtle 3&4 was supposed to be $12B, but is currently in the $30B range.These projects ended up being up to 12 years behind schedule. And that was in a low interest rate era. With higher interest rates, these kinds of schedule overruns will be devastating.
As it was, Framatom (Areva) and Électricité de France needed government bailouts and EdF is being re-nationalized by the French government due to the sad shape of its finances. Westinghouse ended up in creditor protection due to the fallout from the V.C. Summer project, and was sold off by parent company Toshiba.
Sir_Osis_of_Liver@kbin.socialto World News@beehaw.org•‘You’re remembered for the rules you break’: OceanGate CEO who was piloting the Titan admitted in 2021 that the sub’s construction had ‘broken some rules’27·2 years agoThe “move fast and break stuff” techbro ethic might not work so well with pressure vessels.
Sir_Osis_of_Liver@kbin.socialtoReddit@lemmy.ml•r/DebateReligion is requiring all posts to be in Latin3·2 years agoQuando flunkus omni moritati.
That’s just not true. The Westinghouse AP1000 was given type approval in 2011. It’s what is referred to as a GEN3+ reactor. A lot of R&D was put into simplifying the design, reducing the number of pipe runs, valves, pumps etc compared to GEN2 reactors. It also used large sub assemblies that were factory built off-site then moved for final assembly.
In theory they should have been cheaper to build, but they weren’t. Large assemblies that don’t fit together properly need a lot of very expensive site time for rework. There were other issues on top of that, which just compounded the assembly problems. It’s how Vogtle ended up going from $12B to $30B+, and V.C Summer went from $9B to an estimated $23B when the project was cancelled while under construction.
The EPR units from Areva were similar GEN3+and received type approval in the early 2000s. They had similar cost overruns, for similar reasons.
I have strong reservations about SMRs. So far the cost/MW is about on par with traditional reactors while the amount of waste increases by 2 to 30x traditional reactors depending on technology used.
There are reasons why reactors moved from 300-600MW units to 1000MW+ in the first place. The increased output would cover what was thought to be marginal increase in costs. That turned out to be at least somewhat true.